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Abstract
Based on the relationship between the power-law exponent and relaxation time
ν(τ ) recently established in Ryabov et al (2002 J. Chem. Phys. 116 8610)
for non-exponential relaxation in disordered systems and conventional
Arrhenius temperature dependence for relaxation time, it becomes possible
to derive the empirical Vogel–Fulcher–Tamman (VFT) equation ωp(T ) =
ω0 exp[−DTV F/(T − TV F )], connecting the maximum of the loss peak
with temperature. The fitting parameters D and TV F of this equation
are related accordingly with parameters (ν0, τsτ0), entering to ν(τ ) =
ν0[ln(τ/τs)/ ln(τ/τ0)] and (τA, E) figuring in the Arrhenius formula τ (T ) =
τA exp(E/T ). It has been shown that, in order to establish the loss peak
VFT dependence, a complex permittivity function should contain at least
two relaxation times obeying the Arrhenius formula with two different set of
parameters τA1,A2 and E1,2. It has been shown that (1) at a certain combination
of initial parameters the parameter TV F can be negative or even accept complex
valued (2). The temperature dependence of the minimum frequency formed by
the two nearest peaks also obeys the VFT equation with another set of fitting
parameters. The available experimental data obtained for different substances
confirm the validity and specific ‘universality’ of the VFT equation. It has
been shown that the empirical VFT equation is approximate and possible
corrections to this equation are found. As a main consequence, which follows
from the correct ‘reading’ of the VFT equation and interpretation of complex
permittivity functions with two or more characteristic relaxation times, we
suggest a new type of kinetic equation containing non-integer (fractional)
integrals and derivatives. We suppose that this kinetic equation describes a
wide class of dielectric relaxation phenomena taking place in heterogeneous
substances.
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1. Introduction and the formulation of the problem

In recent years, dielectric relaxation phenomena in glass-forming systems and similar
hydrogen-bonded molecular materials received a lot of attention in both experimental and
theoretical aspects [2–9]. The loss-peak angular frequency ωp is generally temperature-
dependent with either a simple activation law of the Arrhenius type or,as is supposed, with some
more complicated relationship depending on the type and structural aspects of the dielectric
material in question. In glass-forming materials, the loss-peak frequency of the α relaxation
process does not follow the classical Arrhenius thermally activated temperature dependence
but can be described by the empirical Vogel–Fulcher–Tamman (VFT) equation [6, 7, 8, 10a–
10c, 11]. In the literature there are several attempts to explain this. One of the explanations is
based on the Adam–Gibbs model of glass transition that assumes the existence of cooperatively
rearranging regions. This model was developed in two subsequent papers. The first one, written
by Gibbs and DiMarsio [12], considers the glass transition as a reflection of an underlying
thermodynamics phase transition. The second one, developed by Adam and Gibbs [13], gives
an expression for the relaxation time that contains the excess configurational entropy Sc in the
denominator of an exponent:

τ (T ) = τ∞ exp(C/T Sc). (1)

The temperature dependence of the configurational entropy, Sc, is calculated from the difference
between the heat capacities of the liquid and crystalline states. If the temperature dependence
of the configurational entropy, Sc is assumed to have the form [14–16]

Sc(T ) = S∞(1 − TK /T ), (2)

where the constant S∞ is the limiting value of Sc(T → ∞) and TK is the Kauzmann temperature
defined in [17] (TK is determined by extrapolation of the temperature dependence of excess
configurational entropy Sc below Tg and gives the temperature where the configurational
entropy would be equal to zero), then inserting this equation (2) into (1) with the assumption
TK = TV F yields the well-known VFT equation. But there are several problems:

(i) Adam–Gibbs theory with assumption (2) can explain the VFT equation only for the range
of temperatures Tg < T < TB which depends on the fragility of the liquid and on the
presence of a β relaxation [16] (TB is defined as an empirical temperature above which
the VFT law fails in a description of the experimental data);

(ii) there are some glassy substances for which TK considerably differs from TV F measured
values [14];

(iii) in the Adam–Gibbs theory all cooperative rearrangements are assumed to be identical to
each other with the same relaxation time. On the other hand, recent experiments have
found that the relaxation of the molecules is dynamically heterogeneous [18–21], i.e. there
are fast and slow relaxing molecules and they can reverse their roles;

(iv) in the Adam–Gibbs theory it was assumed that vibrational entropy of a glass is the same
as the entropy of its crystalline phase, but, as has been pointed out in [22], it is not true.

So there is a problem in overcoming the basic drawbacks of the previous Adam–Gibbs theory
or in developing an alternative approach for explanation of the empirical VFT equation. In this
paper we give another explanation of the VFT equation and show that this equation, together
with its generalized forms, has wider limits of applicability than were expected previously.

As is well known [10a–10c, 23] most of the experimental studies show that the dielectric
ac response in many glass-forming materials can hardly be explained by the ‘classical’ Debye
dielectric function that gives the complex permittivity ε( jω):

ε( jω) = ε′(ω) − jε′′(ω) = ε∞ +
ε(0) − ε∞
1 + jω/ωp

. (3)
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Generally, the experimentally observed non-Debye ac response of glass-forming
hydrogen-bonded substances, as well as that of a variety of solid dielectric materials in a
remarkably wide range of frequencies, have been found to exhibit much more broadening
in their loss curves and in many cases they suffer from asymmetry. This non-Debye ac
response can be classically correlated with some distribution of relaxation times quantifiable
in terms of purely empirical parameters entering into the phenomenological dielectric functions
being proposed to describe such behaviour [10a–10d, 23]. The most conventional empirical
analytical dielectric expression that is often used to describe the generalized broadened
asymmetric relaxation loss peak observed in many dielectric materials over a wide frequency
range is the Havriliak–Negami (HN) equation [10a–10c, 11, 23]:

χH N( jω) = χ ′(ω) − jχ ′′(ω) = (ε( jω) − ε∞)/ε0 = ε(0) − ε∞
[1 + ( jω/ωp)ν]β

, (4)

where χH N( jω) is the HN complex susceptibility with the real and imaginary components
χ( jω) and χ ′′( jω), respectively, and ε0 = 8.854 × 10−12 F m−1 is the permittivity of free
space. The parameter ν (0 < ν � 1) is a measure of the broadness of a symmetric dielectric
relaxation curve and β (0 < β � 1) is the shape parameter of an asymmetric relaxation curve.
The relaxation curve with β = ν = 1 corresponds to the ‘ideal’ Debye-type ac response.
When β = 1, the HN equation reduces to the well-known Cole–Cole (CC) empirical dielectric
function. Another non-Debye dielectric behaviour is obtained from the HN expression for
ν = 1, which is known as the Cole–Davidson (CD) empirical function. Here, this type of
behaviour will be collectively termed the Debye-type response [24].

Traditionally, the measured ac permittivity-frequency data is interpreted and analysed
quantitatively by the use of Debye-type expressions or their linear combinations. To achieve
such quantitative permittivity data analysis, some sort of non-linear curve-fitting programs [25]
to the model chosen are usually employed. Usually, the use of empirical dielectric expressions
is often criticized for they often involve adjustable parameters that are sometimes difficult
to justify and understand their physical significance. Moreover, a conventional non-linear
curve-fitting method usually results in a best curve fit to the experimental data with a number
quantifying how good the fit is and yields a set of values for the adjustable parameters involved,
which are always presumed to represent the behaviour of such data. However, such fitting
programs can fit, given enough adjustable variables, almost any theoretical/empirical model,
but they cannot tell you which theory/model should apply. Consequently, the deduced fitting
parameters might be illusive or misleading, as one often obtains different sets of values for them,
corresponding to different ‘local’ minima in the statistical function used in the minimization
procedure, which give best fits to the same model chosen. Only when a ‘global’ minimum
is arrived at through the minimization procedure can the obtained set of fitting parameters be
considered to be physically well behaved and reliable for further analysis. In general, it is rather
difficult to develop some additional justified criteria which are helpful in differentiation of the
conventional and imposed data curve-fitting (IDCF) approach from an approach which does not
contain initially supposed empirical functions and corresponds to a ‘true’ chosen hypothesis.
But fortunately, in dielectric spectroscopy some additional criteria can be found [26].

Recently, a new approach based on the so-called eigencoordinates (ECs) method, which
appears to be very efficient and relatively simple to use in data curve-fitting analysis, has been
developed by one of the authors (RRN) [26, 27]. The basic ideas and procedures for applying
the ECs method for analysing data are detailed in [27, 28]. It has been applied efficiently
to analyse the measured complex permittivity for semiconducting selenium films [26a] and
glycerol [26b] and without imposing a priori any equivalent-circuit model as is usually done
by many researchers in the field. New impedance functions have been recognized to be
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responsible for the observed complex permittivity behaviour of these substances at different
temperatures and for various heat-treatment conditions by the use of the ECs method. New
complex identified dielectric functions can be expressed as [26]

ε( jω) = ε∞ +
ε(0) − ε∞
1 + R( jω)

. (5)

The complex function R( jω) is determined by the following expressions:

(a) for the equivalent circuit with two recap elements connected in parallel [26a]:

R( jω) = ( jωτ1)
ν1 + ( jωτ2)

ν2 , (6a)

(b) for the equivalent circuit with two recap elements connected in series [26b]:

R( jω) = [( jωτ1)
−ν1 + ( jωτ2)

−ν2 ]−1. (6b)

Here we want to stress one principal feature of these functions, namely expressions (6) contain
two relaxation times, forming one loss (asymmetrical in most cases) peak belonging to one
function (5). These two relaxation times are presented in one function and are formed without
additive combinations of the two ‘simple’ functions similar to the HN (4) function containing
only one relaxation parameter. A single recap (defined also as a ‘universal’ capacitor)
element [10a] or a combination of several recap elements entering into the last expressions
is considered to depict the fractal nature of a sample interior and/or interfacial/electrode
phenomena [29] through a general impedance form having intermediate characteristics with a
‘fractional’ power-law frequency response of the type [30–33]

Zν( jω) ≡ R( jωτ)−ν . (7)

Here τ can be considered as a definition of the relaxation time of a fractal subsystem while R is a
dimensional parameter with power-law exponent located in the interval 0 � ν � 1 but, in some
cases, having values that exceed unity [33]. Each recap element, besides its own exponent
ν, is dominant in a certain frequency range ωmin � ω � ωmax , which cannot sometimes be
achieved by the experimental set-up used, over which such a recap element should reflect the
existence of a fractal structure formed in some mesoscopic systems. Based on such a self-
similar structure approach, it is always possible to analyse the observed ac response through
a dielectric/impedance function that involves one single recap element or a superposition of
two or more such elements [26] instead of using empirical dielectric expressions or models
incorporating equivalent circuits a priori. Identification of the actual combination of physically
meaningful recap elements can be achieved relatively easily by employing the ECs data
curve-fitting method in conjunction with a separation procedure that helps to differentiate
the contributions of the different recap elements to the total impedance/dielectric function
describing the observed behaviour [26].

Preliminary analysis made on the glycerol data in the available frequency and temperature
range showed that temperature dependence of the parameters τ1,2 entering to the identified
formula (5) with the relaxation function (6b) obeys the Arrhenius dependence but the
temperature of the loss peak follows the VFT equation. This initial evidence prompted us
with a basic idea of the relatively intimate relationship between the Arrhenius temperature
dependence of the two relaxation times entering into the complex expressions (6) with the
empirical VFT equation.

But for the complete investigation of this possible relationship the temperature dependence
of the power-law parameters ν1,2(T ) was necessary. Recently a possible dependence of
such type has been found in [1] and confirmed experimentally. So the main problem can
be formulated as follows:
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(1) Is it possible to derive (at least approximately) the empirical VFT equation based on the
Arrhenius temperature dependence of relaxation times τ1,2(T ) = τA1,A2[exp(E1,2/T )]
entering into complex permittivity functions (6a) and power-law exponents ν1,2(τ ) with
the dependence found in [1]?

(2) Can this empirical equation be referred only to glass-forming systems or not?
(3) Is it possible to find the limits of applicability of the VFT equation and show the true limits

of the parameters, entering in this empirical formula?
(4) Is it possible to detect the VFT equation and calculate the true values of the fitting

parameters corresponding to the global minimum?
(5) Is it possible ‘to improve’ the initial VFT empirical equation and find its ‘true’ corrections?
(6) What is the physical meaning of the VFT equation?

The main purpose of this paper is to find the answers to these questions posed and give the
correct interpretation of the VFT equation as a consequence of a specific kinetic phenomena
observed in many heterogeneous materials.

2. Approximate expressions for a loss frequency peak and deduction of the VFT
equation

In order to ‘feel’ a possible dependence of the maximum loss peak versus temperature it is
necessary to obtain the corresponding equation for ωp from the complex dielectric functions
containing at least two relaxation parameters. As possible ‘candidates’ we took for analysis
the expressions (6) entering in the relationship (5) and the dielectric function formed by an
additive combination of the two CC functions, where the complex permittivity is presented in
the form

ε( jω) = ε∞ +
�ε1

1 + ( jωτ1)ν1
+

�ε2

1 + ( jωτ2)ν2
. (8)

Taking the first derivative from the imaginary part of the complex permittivity, which is
determined by expressions (5) and (8) and equating the obtained expression to zero one can
obtain the corresponding transcendental equation for the finding of extreme points of the
function ωp(τ1, τ2, ν1, ν2). The corresponding equations look very cumbersome and are given
in table 1. In general, these transcendental equations determine at least three roots (two possible
peaks with one minimum between them) and cannot be expressed analytically. But numerical
and dimensional analysis show that the leading term corresponding to the desired root can be
expressed in the form

ωp(T ) = C(T ) min(τ−1
1 (T ), τ−1

2 (T ))

(
τ1(T )

τ2(T )

)1/ν(T )

. (9)

Here C is a dimensionless constant determined by the largest relaxation time and ν is the
leading power-law exponent providing the low-frequency loss peak.

Let us suppose that the temperature dependence of the relaxation parameters τ1,2

corresponds to the Arrhenius relationship

τ1,2(T ) = τA1,A2 exp(E1,2/T ). (10)

Here the parameters τA1,A2 = τ1,2(∞) define the characteristic time of the Arrhenius relaxation
and the values E1,2 describe approximately the average energy of reorientation of the fractal
subsystem considered.

The dependence of the power-law exponent with respect to relaxation time [1] can be
presented in the form

ν(τ ) = ν0
ln(τ/τs)

ln(τ/τ0)
. (11)
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Table 1. The structure of transcendental equations obtained for extremal points ωp from
expressions (5), (6) and (8).

Original equation Corresponding transcendental equation

Two recaps in parallel S1,2 = τ 2
1,2 sin

(πν1,2

2

)
, T1 = τ

2ν1
1 , T2 = τ

2ν2
2 ,

ε( jω) = ε∞ +
ε(0) − ε∞
1 + R( jω)

C1,2 = 2τ 2
1,2 cos

(πν1,2

2

)
,

R( jω) = ( jωτ1)
ν1 + ( jωτ2)

ν2 C12 = 2τ
ν1
1 τ

ν2
2 cos

[π(ν1 − ν2)

2

]
S1ν1ω

ν1
p + S2ν2ω

ν2
p + [S1C2(ν1 − ν2) + S2C1(ν2 − ν1)]ω

ν1+ν2
p

+ [S2T1(ν2 − 2ν1) − S1C12ν2]ω2ν1+ν2
p

+ [S1T2(ν1 − 2ν2) − S2C12ν1]ων1+2ν2
p

− S1T1ν1ω
3ν1
p − S2T2ν2ω

3ν2
p = 0.

Two recaps in series S1,2 = τ 2
1,2 sin

(πν1,2

2

)
, C1,2 = τ 2

1,2 cos
(πν1,2

2

)
,

ε( jω) = ε∞ +
ε(0) − ε∞
1 + R( jω)

C3 = τ
ν1
1 τ

ν2
2 cos

[π(ν1 + ν2)

2

]
,

R( jω) = 1

( jωτ1)−ν1 + ( jωτ2)−ν2
S3 = τ

ν1
1 τ

ν2
2 sin

[π(ν1 + ν2)

2

]
,

N1 = C3S1 − C1S3, N2 = C3S2 − C2S3,
D1,2,3 = C2

1,2,3 + S2
1,2,3,

D4 = 2(C1C2 + S1S2), D5 = 2(C1C3 + S1S3),
D4 = 2(C2C3 + S2S3)

N1 D1ν2ω
3ν1
p + N2 D2ν1ω

3ν2
p + [N1 D2(2ν1 − ν2) + N2 D4ν2]ων1+2ν2

p

+ [N2 D1(2ν2 − ν1) + N1 D4ν1]ω2ν1+ν2
p

+ [N1 D6(ν1 − ν2) + N2 D5(ν2 − ν1)]ω
2ν1+2ν2
p

− N2 D3ν1ω
2ν1+3ν2
p − N1 D3ν2ω

3ν1+2ν2
p = 0

Two CC terms in series S1,2 = �ε1,2τ
ν1,2
1,2 sin

(πν1,2

2

)
, T1,2 = τ

2ν1,2
1,2 ,

ε( jω) = ε∞ +
�ε1

1 + ( jωτ1)ν1
C1,2 = 2τ

ν1,2
1,2 cos

(πν1,2

2

)
,

+
�ε2

1 + ( jωτ2)ν2
N1 = C2S1 − C1S2

S1ν1ω
ν1 + 2(S1ν1C2 + S2ν2C1)ω

ν1+ν2

+ (2S1ν1T2 + ν1 N1C2 − S2ν2C1C2)ω
ν1+2ν2 − S1ν1T1ω

3ν1

+ (2S2ν2T1 + ν2 N1C1 − S1ν2C1C2)ω
2ν1+ν2

+ T1C2(S1ν1 − S2ν2)ω
2ν1+2ν2

− N1ν1T1ω
3ν1+ν2 + (S2ν1T1C1C2 − T1 N1C2

− 2S1ν1T1T2)ω
3ν1+2ν2 + S2ν2ω

ν2 − S2ν2T2ω
3ν2

+ (T2(ν1 − ν2)(S1C1 + N1) + T2(2ν2 + ν1)N1)ω
ν1+3ν2

+ (ν1T2(S1T1 − N1C1) + ν2T2(S1C1C2 − 3S2T1))ω
2ν1+3ν2

+ (T2T1S1C2(ν2 − ν1) + T2T1S2C1(ν1 − ν2)

− T1T2(ν2 + ν1)N1)ω
3ν1+3ν2

+ ν1S1T 2
2 ων1+4ν2 − ν1S1T 2

2 T1ω
3ν1+4ν2

+ ν2S2T 2
1 ω4ν1+ν2 − ν2S2T 2

1 T2ω
4ν1+3ν2

Here ν0 = dG/2, τs is the characteristic time of the self-diffusion process and τ0 determines
the cut-off time of the scaling relaxation process in the time domain. The parameter dG defines
the fractal dimension of the point set, where relaxation units are interacting with the statistical
reservoir. Verification of relationship (11) describing the process of non-exponential relaxation
in disordered systems with statistically self-similar structures shows that the characteristic times
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τs and τ0 do not depend on temperature and characterize the substance considered. Taking
into account the temperature dependence of the relationship (11), which implies the leading
power-law exponent chosen from (10), the approximate expression for the minimal root (9)
can be expressed in the form

ωp(T ) = Cω0 exp

(
�E12

ν0T
− B

T − TV F

)
. (12)

Here the parameters entering in this expression are defined as follows:

ω0 = min(τ−1
A1 , τ−1

A2 ) exp

[
1 − A

v0
ln

(
τA1

τA2

)]
, TV F = E

ln(τs/τA)
. (13a)

E12 = E1 − E2, A = 1 − ln(τ0/τA)

ln(τs/τA)
, B = A

ν0

(
�E12 + TV F ln

(
τA1

τA2

))
. (13b)

The values TV F and A in expressions (13) are defined by the parameters entering into the
leading power-law exponent ν(τ ) with minimal value of τ = τA exp(E/T ) among relaxation
times defined by (10). If |�E12/T | � 1, then from expression (12) we obtain the desired
VFT equation with parameter B defined as

ωp(T ) = Cω0 exp

(
− B

T − TV F

)
, with B = A

ν0
ln

(
τA1

τA2

)
TV F . (14)

Preliminary analysis shows that the empirical Vogel–Fulcher temperature TV F in (13a) is
not directly related to the critical temperature defining the phase transition in glass-forming
systems. It is related to the intermittent (fractal) character of relaxation in self-similar
systems [1] and defined by the behaviour of the power-law exponent ν(τ ) by means of
the Arrhenius temperature dependence. It can accept negative values and is generated by
a ‘specific competition’ between the power-law exponents ν1(τ1) and ν2(τ2), forming the
leading asymptotic term for the low-frequency peak. From this preliminary analysis it follows
also that the complex dielectric functions should be defined at least by the two relaxation times
τ1(T ), τ2(T ). The VFT equation is expected to be ‘universal’ and applicable not only to the
glass-forming systems; other extremal points of the function ε( jω) can also be related by the
VFT equation but with other values of the fitting parameters B and TV F . It is obvious that
the VFT equation is approximate and the first correction is stipulated by the Arrhenius part in
(12). It is instructive also to find possible corrections to the VFT equation in order to see the
limits of its applicability. Numerical analysis of the complete transcendental equations given
in tables 1 and 2 shows that the most general relationship for the leading extremal term which
can be derived from the reduced form of the initial transcendental equation for ωp:

A(ωpτ1)
α − B(ωpτ2)

β = 0, (15a)

can be expressed as

ωp =
(

B

A

)1/(α−β)

τ−1
2

(
τ2

τ1

)α/(α−β)

≡ C min(τ−1
1 , τ−1

2 )

(
τ1

τ2

)a/(ν1+bν2)

. (15b)

In the last formula the values a and b in the complex exponent are expressed frequently
by some integer numbers. C is a constant which weakly depends on the values of the
corresponding power-law exponents. Taking into account expressions (10) and (11) one can
find the temperature dependence of the combined exponent in (15b). It can be presented in the
following equivalent forms:

a

ν1 + bν2
= a

ν01
ln(τ1/τs1)

ln(τ1/τ01)
+ bν02

ln(τ2/τs2)

ln(τ2/τ02)

= r
T 2 + a1T + b1

T 2 + a2T + b2
= r

[
1 +

p1

T − T1
+

p2

T − T2

]
. (16)
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The last expression is useful for analysis if the roots of the square trinomial in the dominator
are real. Here new parameters are related to initial expressions as follows:

r = a
a10a20

ν01a1sa20 + bν02a2sa10
, a1 = E1 + E2

a10a20
, b1 = E1 E2

a10a20
, (17a)

a2 = (ν01a20 + bν02a2s)E1 + (ν01a1s + bν02a10)E2

ν01a1sa20 + bν02a2sa10
, b2 = (ν01 + bν02)E1 E2

ν01a1sa20 + bν02a2sa10
, (17b)

T1,2 = −a2

2
±

√
a2

2

4
− b2, p1 = T1(a1 − a2) − (b1 − b2)

T1 − T2
,

p2 = − T2(a1 − a2) + (b1 − b2)

T1 − T2
, (17c)

ais = ln

(
τAi

τsi

)
, ai0 = ln

(
τAi

τ0i

)
, (i = 1, 2). (17d)

Taking into account expression (16) one can write the temperature dependence of the loss peak
in two equivalent forms:

ωp = C min(τ−1
1 , τ−1

2 ) exp

[
T 2 + a1T + b1

T 2 + a2T + b2

(
r ln

(
τA1

τA2

)
+ r

�E12

T

)]

= ω̃0 exp

[
�E

T
+

B1

T − T1
+

B2

T − T2

]
(18)

ω̃0 = C min(τ−1
A1 , τ−1

A2 ) exp

[
r ln

(
τA1

τA2

)]
, �E = r�E12

(
1 − p1

T1
− p2

T2

)
,

B1,2 = r p1,2

[
ln

(
τA1

τA2

)
+

�E12

T1,2

]
. (19)

The generalized VFT equation presented by expression (18) confirms again the tendency
marked in the analysis of the simplified expression (9), namely

(a) a certain ‘universality’ and applicability to a wide class of dielectric spectra described by
expressions (5), (6) or (8) with relaxation times belonging to possible fractal subsystems;

(b) the absence of a link with possible phase transition phenomena;
(c) the fitting parameters T1,2 defined by expression (17c) can accept in principle arbitrary

values including negative and even complex-conjugated ones (when 4b2 > a2
2);

(d) applicability of the last expression for the analysis of temperature dependences of other
extreme points identified for an imaginary part of the complex permittivity function.

Preliminary analysis shows that it is rather difficult to establish the relationship between
the fitting parameters obtained from the initial VFT equation or its generalized form (19) with
the initial set of parameters following from relationships (17). From our point of view it
is much more informative to find possible corrections to the recently found formula (11) and
analyse carefully the dependence of the power-law exponents ν(τ ) with respect to temperature.
Supposing that the relaxation times follow the Arrhenius dependence one can obtain for analysis
the following expression:

ν(T ) = ν̃0

[
1 − b

T + T0

]
. (20)

The fitting parameters entering into the last expression are defined as follows:

ν̃0 = ν0
ln(τA/τs)

ln(τA/τ0)
, T0 = E

ln(τA/τ0)
, b = E

ln(τ0/τs)

ln(τA/τ0) ln(τA/τs)
. (21)
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Table 2. The reduced (simplified) forms of the transcendental equations, which approximate the
initial transcendental equations in the vicinity of a low-frequency minimum.

Case Chosen fitting parameters and leading parts (reduced equation)
for equivalent scheme with two recaps in parallel

Case 1
(when the times τ1,2 are differed Values of parameters
considerably from each other: τ2 � τ1)

τ1 = 9 × 10−8, ν1 = 0.99, τ2 = 9 × 10−4, ν2 = 0.5
(the values of parameters are chosen occasionally)

S1,2 = τ 2
1,2 sin

(πν1,2

2

)
, T2 = τ

2ν2
2

Leading parts solution of this reduced equation

S2ν2ω
ν2
p − S2ν2T2ω

3ν2
p = 0 → ωp = 1/τ2

Case 2
(when the characteristic relaxation
times τ1,2 are close to each other: τ2 ∼ τ1) Values of parameters

τ1 = 9 × 10−4, ν1 = 0.1, τ2 = 9 × 10−4, ν2 = 0.4
(the values of parameters are chosen occasionally)

S1,2 = τ 2
1,2 sin

(πν1,2

2

)
, T2 = τ

2ν2
2 ,

C1,2 = 2τ 2
1,2 cos

(πν1,2

2

)
Leading parts

[S1C2(ν1 − ν2) + S2C1(ν2 − ν1)]ω
ν1+ν2
p − S2T2ν2ω

3ν2
p = 0 →

Solution of this reduced equation

ωp = C min(τ−1
1 , τ−1

2 )
( τ1

τ2

)aν2/(ν1+bν2)

The values of a and b in the complex exponent are expressed frequently
by some integer numbers. C is a constant, which weakly depends
on the values of the corresponding power-law exponents.

These expressions show again that the ‘Volger–Fulcher temperature’ T0 can accept any arbitrary
value defined by the ratio τA/τ0. Comparing formulae (9), (11) and (12) with expression (20)
it is easy to note that the inverse power-law exponent 1/ν(T ) can also be presented in the
form (20) with the replacement ν0 → 1/ν0, τs ↔ τ0 in the corresponding expressions (21).
This invariance is conserved also for the ratio (ν1 + c1ν2)/(ν1 + c2ν2) which is decomposed
into two partial fractions by analogy, as has been done for expression (16).

3. The use of the ECs method for detection of the VFT equation

One of the basic features of the above-mentioned ECs method is the determination of a ‘global’
minimum in the realized fitting procedure. It becomes important when we do not know a priori
initial values of the parameters, especially in cases when the number of fitting parameters is
sufficiently large. Another important feature of the ECs method consists of the capability of
detection of the most suitable analytical hypothesis among other proposed hypotheses chosen
for the fitting of real experimental data.

In the ECs representation, the ECs plots corresponding to a ‘true’ function should give a
set of sloping lines with fitting constants that enter into a basic relationship in a linear way.
They are related algebraically to the initial set of fitting parameters of the original function
considered.
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In this section we do not intend to exhibit all details of the ECs procedure (they are given
in [26–28]). It is necessary to obtain the basic linear relationships and to plot all sloping lines
for the identification of the initial VFT equation and the generalized expressions (12) and (18)
containing the necessary corrections. Here it is sufficient to give only the final basic linear
relationships corresponding to the chosen functions.

Ordinary VFT equation

Y (T ) = C1 X1(T ) + C2 X2(T ) + C3 X3(T ),

Y (T ) =
∫ T

Tm

u ln[ωp(u)] du − 〈· · ·〉,

X1(T ) =
∫ T

Tm

ln[ωp(u)] du − 〈· · ·〉; C1 = TV F ,

X2(T ) = T 2 − 〈· · ·〉; C2 = ln[ω0]

2
,

X3(T ) = T − 〈· · ·〉; C3 = −TV F (D + ln[ω0]).

(22)

The VFT equation with the Arrhenius correction:

Y (T ) = C1 X1(T ) + C2 X2(T ) + C3 X3(T ) + C4 X4(T ),

Y (T ) =
∫ T

Tm

u2 ln[ωp(u)] du − 〈· · ·〉,

X1(T ) =
∫ T

Tm

u ln[ωp(u)] du − 〈· · ·〉; C1 = TV F ,

X2(T ) = T 3 − 〈· · ·〉; C2 = ln[ω0]

3
,

X3(T ) = T 2 − 〈· · ·〉; C3 = A − ln[ω0]TV F − B

2
,

X4(T ) = T − 〈· · ·〉; C4 = −ATV F .

(23)

The ‘generalized’ form of the VFT equation with two temperatures

ωp(T ) = ω0 exp

(
A

T
− B

T − T1
− C

T − T2

)
.

Y (T ) = C1 X1(T ) + C2 X2(T ) + C3 X3(T ) + C4 X4(T ) + C5 X5(T ) + C6 X6(T ),

Y (T ) =
∫ T

Tm

u3 ln[ωp(u)] du − 〈· · ·〉,

X1(T ) =
∫ T

Tm

u2 ln[ωp(u)] dT − 〈· · ·〉; C1 = T1 + T2,

X2(T ) =
∫ T

Tm

u ln[ωp(u)] du − 〈· · ·〉; C2 = −T1T2, (24)

X3(T ) = T 4 − 〈· · ·〉; C3 = ln[ω0]

4
,
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Figure 1. Open circles represent the left part of the transcendental equation (table 1, two recaps
in parallel). The full line represents the sum of two leading parts of the transcendental equation
for this case (see table 2, case 1). The parameters chosen for this case and the leading parts are
shown in table 2 (case 1). The arrow shows the point at which the transcendental expression and
the sum of two leading parts are equal to zero. This zero point determines the peak frequency of
the imaginary part of complex susceptibility.

X4(T ) = T 3 − 〈· · ·〉; C4 = A − B − C − ln[ω0](T1 + T2)

3
,

X5(T ) = T 2 − 〈· · ·〉; C5 = ln[ω0]T1T2 − A(T1 + T2) + BT2 + CT1

2
,

X6(T ) = T − 〈· · ·〉; C6 = AT1T2.

Here, the insertion of the operation 〈· · ·〉 means that the corresponding arithmetic mean value
of the appropriate quantity should be subtracted [27]. This operation is necessary to eliminate
possible constants from the corresponding equations and to provide the basic requirement for
the linear least square method (LLSM), namely 〈ε〉 ≡ 0 [34]. As has been mentioned above,
the main elegant feature of the ECs method is its ability to differentiate the actual (‘native’)
function from a spurious (‘strange’) function that does not satisfy this basic linear relationship.
The basic linear relationship of a native function having s fitting parameters can be reduced
to a set of s2s−1 (here s is a dimension of the fitting vector [27]) self-verified sloping lines
(ECs plots), which will be distorted by the strange function. Therefore, ‘probing’ of the
validity/applicability of ‘theoretical’ models chosen to describe the experimental data under
investigation by the ECs curve-fitting approach should be of general scientific interest [26–28].

The simulation experiment shows that not only the maximum point of the imaginary part
of the complex susceptibility, but also the point of a minimum located between α and β peaks
obeys the VFT equation with different values of corresponding fitting parameters. In this
case the curves of temperature dependences of times τ1 and τ2 do not intersect with each
other visually but have to be ‘quasiparallel’ in a semi-log scale picture. The VFT equation
is stipulated by the temperature dependences of the power-law exponents ν1,2 described by
equation (20). Another interesting feature that should be marked here is that, at some values
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Figure 2. Open circles represent the left part of the transcendental equation (table 1, two recaps
in parallel). The full curve represents the sum of two leading parts of the transcendental equation
(table 2, case 2). The parameters chosen in this case and leading parts are shown in table 2 (case
2). The arrow shows the point at which the transcendental expression and the sum of two leading
parts in this case are equal to zero.

of the fitting parameters realized with the help of the ECs method and corresponding to the
global minimum, the parameters T1,2 in the generalized equation (18) can accept negative or
even complex conjugated values. Other details are illustrated by figures 1–5 together with their
captions and do not need additional comments.

4. Analysis of available experimental data

The main conclusion, which follows from imitation experiments, is that the VFT equation
is not directly related with critical phenomena taking place in glassy systems. It is a
consequence of the basic relationships between the power-law exponent and relaxation time
ν(τ ) recently established in [1] for non-exponential (scaling) relaxation in disordered systems
and competition of the two processes with characteristic relaxation times τ1,2 (having an
Arrhenius temperature dependence) expressed either in the form of equation (5) with R( jω)

from (6a) and (6b) or in the form of a linear combination of two CC type processes (8). In this
section we shall try to analyse some real available experimental data in order to detect the VFT
temperature dependence for peak frequency with the use of the ECs method. We want to stress
here that the ECs method is more accurate in comparison with the method of transformation
of initial data to a straight line (which incorporates the numerical differentiation operation)
suggested by Stickel [35].

The first set of data which were analysed for verification of the VFT formula with
possible corrections from the use of the ECs method (22)–(24) represent temperature
dependences of the maximum loss peak frequency for [(Ca(NO3)2]0.4[KNO3]0.6 (CKN) and
[(Ca(NO3)2]0.4[RNO3]0.6 (CRN) (strong ionic conductors) alongside glass-forming materials,
such as glycerol and propylene carbonate (PC). We passed all these data related to the
temperature dependence of the maximum loss peak frequency through the ECs ‘tuned’ for
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Figure 3. Open circles represent the temperature dependence of the relaxation time τ1 (τ1 =
9 × 10−8 × exp(500/T )). Open squares represent the temperature dependence of the relaxation
time τ2 (τ2 = 1 × 10−12 × exp(3000/T )). Broken lines separate three regions: τ1 � τ2, τ1 ∼ τ2
and τ1 � τ2.

the identification of three functions: a ‘conventional’ VFT function (12), VFT with Arrhenius
correction (12) and the generalized VFT function expressed by equation (18). It has been found
that the data for CKN and CRN are described by the generalized VFT law (18) with complex-
conjugated values of temperatures T1 and T2. Open circles and full curves, respectively, in a
semi-log scale show the CKN and CRN data and the corresponding fitting curves in figures 6
and 7. The temperature data for glass-forming glycerol and PC are described by the VFT
equation with the Arrhenius correction (12). The data and corresponding fitting curves for
glycerol and PC are shown in figures 8 and 9, respectively, by open geometrical figures and
full lines, respectively, in a semi-log scale. The chosen fitting functions and the results of
the fitting procedure (values of the fitting parameters) for this set of data are collected in
table 3.

The second set of DS data for this analysis have been obtained from Professor Shin
Yagihara and Dr Naoki Shinyashiki (Research Group of Molecular Complex System Physics
Department, Tokai University, Japan). They represent temperature dependences of the
maximum loss peak frequency for pure glycerol. We passed these data through the ECs
‘tuned’ for the identification of three functions: a ‘conventional’ VFT function (14), VFT with
Arrhenius correction (12) and the generalized VFT function expressed by equation (18). It has
been found that all these data are described by expression (14). The data and the corresponding
fitting curves for these data are shown in figure 10 by open circles and full line, respectively, in
a semi-log scale. The chosen fitting functions and the results of the fitting procedure (values
of the fitting parameters) for these data are collected in table 3. Figure 11 demonstrates the
‘German’ and ‘Japanese’ frequency loss peaks combined together for comparison. These
independent verifications reveal two important conclusions:

(a) independent verification of two types of glycerol exhibits almost the same temperature
dependence;
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Figure 4. This figure demonstrates the temperature behaviour of the peak frequency marked by
open circles. The temperature dependences of the parameters of relaxation times are shown in the
caption to figure 3. The parameters for power-law exponents have some constant values: ν1 = 0.9
and ν2 = 0.45. The full line represents the fitting curve obtained with the use of the ECs method
for an ordinary VFT law with fitting parameters: TV F = 132.98 ± 0.18, D = 1.54 ± 0.03,
ω0/2π = 1.019 × 106 ± 3000. Broken lines show the asymptotes for high- and low-temperature
regions obtained from the original expression for the imaginary part of the complex susceptibility
(table 1, two recaps in parallel) neglecting the smallest relaxation time. The parameters for these
asymptotes coincide with the parameters that are shown in the caption to figure 3. The dotted
line shows the result of the fitting procedure by the simple Arrhenius type equation for a narrow
region where τ1 ∼ τ2. The fitting parameters in this case are τ = 4 × 10−9 × exp(1315/T ). The
resulting values of the fitting parameters of this Arrhenius equation for this small region occupy
an intermediate position between that obtained for high- and low-temperature ranges and shown in
the caption to figure 3.

(b) ECs methods without any initial guess gave fitting parameters which are not so close to
each other (see table 3).

5. Summary and basic conclusions

In this paper it has been shown that:

(i) It is possible to derive the empirical VFT equation based on the Arrhenius temperature
dependence of relaxation times τ1,2(T ) = τA1,A2[exp(E1,2/T )] entering into complex
permittivity functions (6), and with a dependence (11) for the power-law exponents ν1,2(τ )

found in [1].
(ii) This empirical equation does not have any direct relation with the glass transition

phenomena and so cannot be referred only to glass-forming systems. The verification of
the VFT equation for ionic conductors and the validity of the VFT equation for minimal
points following before/after a low-frequency peak confirms this preliminary statement.

(iii) There is a generalization of the VFT formula, i.e. equations (12) and (18), which can be
used to describe the temperature dependence of the loss peak frequency below and above
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Table 3. The fitting parameters of the VFT equation calculated for available substances. (The
abbreviation GD means ‘German’ data obtained from Dr P Lunkenheimer, while J D means
‘Japanese’ data obtained from Professor Shin Yagihara.)

Data Fitting function Fitting parameters

Propylene carbonate (GD) VFT with Arrhenius correction (12) TV F = 132.6 ± 1.9 K
Cω0/2π = 1.6 × 109

�E12/ν0 = 2051
B = 998.9

Pure glycerol (GD) VFT with Arrhenius correction (12) TV F = 114.79 ± 3.6 K
Cω0/2π = 1.26 × 1011

�E12/ν0 = 5136
B = 4387

CKN [(Ca(NO3)2]0.4[(K(NO3)]0.6 (GD) Generalized VFT function (18) T1 = 340.322 − i × 52.61 K
T2 = 340.322 + i × 52.61 K

0/2π = 8.35 × 1018

�E12 = −111 67
B1 = 299.47 − i × 144.104
B2 = 299.47 + i × 144.104

CRN [(Ca(NO3)2]0.4[(R(NO3)]0.6 (GD) Generalized VFT function (18) T1 = 343.49 − i × 36.577 K
T2 = 343.49 + i × 36.577 K

0/2π = 3.6 × 1024

�E12 = −15 515.57
B1 = 135.97 + i × 48.1
B2 = 135.97 − i × 48.1

Pure glycerol (JD) VFT function (14) TV F = 123.89 ± 11.3 K
ω0/2π = 2.42 × 1014

D = 20.2

the glass-forming temperature Tg. As was shown by the treatment of CKN and CRN data
the generalized VFT equation does not have a restriction on the temperature range below
Tg (for CKN and CRN Tg ≈ 333 K)

(iv) Previously the temperature dependence of the loss peak frequency was described by the
VFT equation in quite a narrow temperature range Tg < T < TB , which depends on the
fragility of the liquid and on the presence of a β relaxation [16]. In our approach the VFT
equation has wider limits of applicability. It follows from the existence of at least two
relaxation processes in a fractal system studied and their specific temperature dependence.

Modelling experiments have shown that not only a maximum loss peak but also a minimum
between two peaks obeys the conventional or generalized forms of the VFT equations. This
behaviour cannot be explained by the Adam–Gibbs theory.

Also in this work we found relations (13a) and (17c) that connect the empirical TV F

temperature with characteristic times τA, τ0 and τs and other relaxation parameters and so
clarified a physical meaning for this empirical temperature.

This work gives the possibility to put forward some problems for experimentalists working
in the field of dielectric spectroscopy.

They are:

(1) If the VFT temperature behaviour does not have a direct relation with the glass transition
phenomena and is a consequence of the two or more relaxation processes, then this type of
behaviour must be observed in non-glass-forming materials with two or more relaxation
processes. This hypothesis needs further experimental verification.
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Figure 5. Typical temperature dependences of the power-law exponents ν1,2 that lead to VFT-
like behaviour are shown here by open circles and squares. These temperature dependences were
obtained with the help of parameters for the temperature dependences of relaxation times that
coincide with those shown in the caption to figure 3 and with the parameters for equation (11):
ν1 = 0.96 × ln(τ/1 × 10−5)/ ln(τ/1 × 10−6), ν2 = 0.5 × ln(τ/1 × 10−6)/ ln(τ/1 × 10−15).

(2) Do the generalized VFT equations expressed by formulae (12) and (18) have no restrictions
in applicability for other glass-forming systems in the temperature range below the glass
transition temperature Tg and also in the high-temperature range exceeding a temperature
TB , where the ordinary VFT equation fails in its description of the experimental
data? This hypothesis also needs experimental verification for other glass-forming
systems.

In this paper we tried to understand the basics of the VFT equation and find its true
interpretation. It has been shown that the empirical VFT is generated by the scaling (non-
exponential) character of relaxation taking place in a wide class of heterogeneous materials.
In fact, three typical characteristic times should be used for the description of relaxation
processes in heterogeneous materials. The characteristic time τs determines the duration of
the self-diffusion process, while τ0 defines the cut-off time of the scaling relaxation process in
time domain. These two times figuring in expression (11) characterize the non-exponential part
of the relaxation [1]. A possible individual reorientation of a dielectric dipole is characterized
by the time τA. In reality one can expect that they obey the following relationship:

τA � τs � τ0. (25)

(Here we should notice that in model experiments one can also obtain the VFT behaviour
at ‘nonphysical’ conditions τA > τs > τ0.) The second part of this inequality is confirmed
in [1] and by our calculations.

In conclusion, we should notice that relationship (11) obtained in [1] has an evaluative
character. It is necessary to analyse more carefully a possible temperature dependence of the
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Figure 6. Open circles and full curve represent the temperature dependence of the maximum loss
peak frequency for [(Ca(NO3)2]0.4[KNO3]0.6(CKN) and the fitting curve obtained by the fitting
procedure with the generalized VFT function (18). The chosen fitting function and the results of
the fitting procedure (values of the fitting parameters) for these data are collected in table 3.
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Figure 7. Open circles and full curve represent the temperature dependence of the maximum loss
peak frequency for [(Ca(NO3)2]0.4[RNO3]0.6 (CRN) and the fitting curve obtained by the fitting
procedure with the generalized VFT function (18). The chosen fitting function and the results of
the fitting procedure (values of the fitting parameters) for these data are collected in table 3.

parameters τs and τ0 in order to increase the region of applicability of expression (11) for
a deeper understanding of relaxation phenomena taking place in disordered materials with
fractal structure.
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Figure 8. Open circles and full curve represent the temperature dependence of the maximum loss
peak frequency for glass-forming glycerol and the fitting curve obtained by the fitting procedure
using the VFT equation with the Arrhenius correction (12). The chosen fitting function and the
results of the fitting procedure (values of the fitting parameters) for these data are collected in
table 3.
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Figure 9. Open circles and full curve represent the temperature dependence of the maximum loss
peak frequency for PC and the fitting curve obtained by the fitting procedure with the use of the
VFT equation with the Arrhenius correction (12). The chosen fitting function and the results of the
fitting procedure (values of the fitting parameters) for these data are collected in table 3.

Combining the investigations realized in this paper one can formulate the following
important question:



New approach in the description of dielectric relaxation phenomenon 3499

4.0 4.5 5.0 5.5
1E-4

1E-3

0.01

0.1

1

10

100

1000

10000

100000

1000000

1E7

 Pure glycerol(JD)
 Fitting curve (VFT function (14))

f m
ax

(H
z)

1000/T(K)

Figure 10. Open circles and full curve represent the temperature dependence of the maximum
loss peak frequency for pure glycerol (Japanese data) obtained from Tokai University, Japan and
the fitting curve obtained by the fitting procedure with the VFT equation (14), respectively. The
chosen fitting function and the results of the fitting procedure (values of the fitting parameters) for
these data are collected in table 3.

What kind of kinetic equation enables us to describe the relaxation phenomenon in a
wide class of heterogeneous materials, where the identified complex permittivity function is
described by equations (5) and (6) with a loss peak temperature dependence obeying the VFT
equation?

After the detailed analysis realized in this paper the answer to this question can be found.
Let us consider the kinetic equation in fractional derivatives of the following type:

[τ ν1
1 Dν1

t0 + τ
ν2
2 Dν2

t0 ](P(t) − P(t0)) + P(t) = 0. (26)

Here P(t) is a value of the total polarization and the operator Dq
a (0 � q � 1) defines the

Riemann–Liouville non-integer differential operator [36]:

Dq
a f (x) = d

dx
[Dq−1

a f (x)] = d

dx

[
1

�(1 − q)

∫ x

a
(x − y)−q f (y) dy

]
. (27)

The parameters τ1,2 determine some characteristic times, which provide the conservation of
dimension in both parts of equation (26). It is easy to find the stationary solution of the kinetic
equation (26). We present the solution in the form

P(t) = χ( jω) exp[ jωt]. (28)

Taking into account the value of the integral

Dν
−∞[exp( jωt)] = d

dt

[
1

�(1 − ν)

∫ t

−∞
(t − u)−νejωu du

]
= ( jω)ν exp( jωt) (29)

and an initial condition P(−∞) = 0 it is easy to find the expression for complex susceptibility:

χ( jω) = χ(0)

1 + ( jωτ1)ν1 + ( jωτ2)ν2
. (30)



3500 R R Nigmatullin et al

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
1E-5
1E-4
1E-3
0.01
0.1

1
10

100
1000

10000
100000

1000000
1E7
1E8
1E9

1E10
1E11
1E12
1E13

 glycerol(German data) 
 glycerol(Japanese data) 

f m
ax

(H
z)

1000/T

Figure 11. Open circles and squares and full curves represent together the temperature dependences
of the maximum loss peak frequency and fitting curves for pure glycerol obtained from Tokai
University, Japan, Japanese data and glycerol measured by Dr P Lunkenheimer (German data),
respectively. The chosen fitting function and the results of the fitting procedure (values of the
fitting parameters) for these data are collected in table 3.

This expression totally corresponds to the complex permittivity written in the form (5) with
R( jω) from (6a).

Let us consider another kinetic equation written in the form

[τ−ν1
1 D−ν1

t0 + τ
−ν2
2 D−ν2

t0 ](P(t) − P(t0)) + P(t) = 0, (31a)

or equivalently

[τ−ν1
1 D−ν1

t0 + τ
−ν2
2 D−ν2

t0 ]−1(P(t) − P(t0)) + P(t) = 0 (31b)

where fractional exponents are supposed to be located in the interval (0 � ν1, ν2 � 1). The
stationary solution of these equations can be found by analogy with (26). At the initial condition
P(−∞) = χ(0) exp[ j (ω − jε)t](ε → 0) (which corresponds to the adiabatic switching of
the electric field at t = −∞) it is easy to find the expression for complex susceptibility. It can
be written as

χ( jω) = [( jωτ1)
−ν1 + ( jωτ2)

−ν2 ]χ(0)

1 + [( jωτ1)−ν1 + ( jωτ2)−ν2 ]
= χ(0)

1 + [( jωτ1)−ν1 + ( jωτ2)−ν2 ]−1
(32)

and corresponds to the expression of the complex permittivity (5) with R( jω) taken from (6b).
In such a way, we proved that the process of dielectric relaxation in a wide class of

heterogeneous materials possessing a fractal structure is described by kinetic equations of
the type (26) or (31). The special procedure developed in [26] for recognition of complex
permittivity of the type (5) in the frequency domain and the validity of the VFT equation
can be used as a decisive argument in proving that the real process of dielectric relaxation is
described by kinetic equations containing a linear combination of fractional derivatives (26)
or integrals (26). Generalizing these kinetic equations containing fractional derivatives one
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can expect the following structure of kinetic equations describing the dielectric relaxation
phenomenon in the time domain:

n∑
k=1

τ
νk
k Dνk

t0 [P(t) − P(t0)] + P(t) = 0. (33)

The physical meaning of the last kinetic equation is the following. We suppose that all
relaxation systems, including a set of strongly correlated microdipoles, can be divided into n
subsystems. It might be a set of dipole clusters or an ensemble of strongly correlated molecules.
Each subsystem is interacting with a thermostat with the help of a collision mechanism, which
is expressed by means of a fractional derivative (the physical meaning of the fractional integral
is discussed in [36]). Each subsystem k (k = 1, 2, . . . , n) is characterized by a relaxation time
τk showing the contribution of the chosen relaxation unit to the general relaxation. The number
of subsystems giving an additive contribution to the general picture of relaxation is defined by
the structure of the concrete heterogeneous material considered. At an initial stage the kinetic
equation (33) can be considered as a reasonable and phenomenological hypothesis, which is
confirmed by experimental measurements. After identification of this type of kinetic equation
on a wide class of heterogeneous materials further theoretical attempts should be undertaken
in order to explain their microscopic origin.

In conclusion we want to stress that an attempt to represent a complex dielectric spectrum
in the form of a linear combination of empirical functions of the type (3) or (4) can be considered
only as an approximation. An additive combination of complex permittivity functions in the
frequency domain can be justified only in the case when we deal with processes having different
physical origins. It might be, for example, a relaxation process with a combination of electrode
polarization effects or an independent LFD process related to the conductivity of a material
with a bulk relaxation process, etc. From the picture of ‘good fitting’ obtained with the help
of a linear combination of complex permittivity functions it becomes impossible to restore a
‘true’ kinetic equation for the total polarization, describing a ‘true scenario’ of the evolution
of polarization in a time domain taking place for bulk material. The kinetic equation (33)
for the total polarization giving a more consistent picture of dielectric relaxation for complex
materials can serve as a reliable basis for the understanding of relaxation phenomena in a wide
class of heterogeneous materials.
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[2] Böhmer R, Ngai K L, Angell C A and Plazek D J 1993 J. Chem. Phys. 99 4201
[3] Hofmann A, Kremer F, Fischer E W and Schönhals A 1994 Disordered Effects on Relaxation Processes

ed R Richert and A Blumen (Berlin: Springer) p 309
[4] Schönhals A, Kremer F, Hofmann A, Fischer E W and Schlosser E 1993 Phys. Rev. Lett. 70 3459



3502 R R Nigmatullin et al

[5] Leheny R L and Nagel S R 1997 Europhys. Lett. 39 447
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